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We solve the first-passage problem for the Heston random diffusion model. We obtain exact analytical
expressions for the survival and the hitting probabilities to a given level of return. We study several asymptotic
behaviors and obtain approximate forms of these probabilities which prove, among other interesting properties,
the nonexistence of a mean-first-passage time. One significant result is the evidence of extreme deviations—
which implies a high risk of default—when certain dimensionless parameter, related to the strength of the
volatility fluctuations, increases. We confront the model with empirical daily data and we observe that it is able
to capture a very broad domain of the hitting probability. We believe that this may provide an effective tool for
risk control which can be readily applicable to real markets both for portfolio management and trading
strategies.
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I. INTRODUCTION

The study of first-passage and exit problems has a long
and standing tradition in physics, engineering, and natural
sciences �1,2�. Perhaps the most important example of an
exit problem in physics is provided by the “Kramers prob-
lem” where one studies the possible escape, owing to noise,
of a system from a stable estate �3,4�. Classical examples of
first-passage problems are the collapse of mechanical struc-
tures because of random external vibrations which attain an
extreme amplitude beyond the stability threshold, or the
“false alarm problem” where internal fluctuations induce the
current or voltage of an electric circuit to reach a critical
value for which an alarm is triggered �5,6�.

In finance, the study of extreme events from the perspec-
tive of first-passage or exit problems is still beginning. In a
few recent papers, we have addressed the escape problem in
the context of econophysics using several techniques for dif-
ferent settings �7–11�. In the present paper we want to ad-
dress for financial series the related issue of the first-passage
problem. This is a relevant question because it is intimately
connected to extreme values and, therefore, to risk and de-
fault.

Needless to say the evaluation and the subsequent risk
control should be central issues in finance. Crisis are, never-
theless, inherent characteristics of financial markets although
one expects them to be rare. Unfortunately this trend is
changing, at least in the last two decades, for the frequency
of appearance of extreme events seems to be increasing and
there is a growing consensus that there should be a change in
model, especially in the fields of option pricing and struc-
tured products �12�.

Traditional tasks related to risk control have been based
on the assumption that prices follow the geometric Brownian
motion �GBM�. However, it is known for long �13,14� that
the Gaussian distributions resulting from the GBM decay for
large values of the price �or the return� much more steeply

than the empirical distributions. In other words, real financial
distributions present fat tails and prices are highly leptokurtic
�15�.

Therefore, the GBM model clearly underestimates risk.
Indeed, risk is associated with large deviations of returns,
and the appearance of these deviations is determined by the
tails of the probability distribution. Since for the GBM tails
are much thinner than the empirical ones, we conclude that
the actual risk is higher than the risk foreseen by the GBM.
Practitioners usually remedy this �dangerous �12�� inad-
equacy of the GBM model by the ad hoc procedure of as-
suming that prices follow a mixture of two Gaussian distri-
butions. The mixture is tailored to reproduce the real
probability distribution; that is to say, one Gaussian curve
adjusts the center of the real distribution and the second one
the tails �16�. Whereas this certainly improves risk manage-
ment, it is an unsatisfactory procedure, for it is little more
than curve fitting without any model sustaining it. Similar
objections can be raised to other approaches based on adjust-
ing actual prices by truncated Levy distributions �17–19�.

Another facet of the problem is provided by the fact that
the GBM assumes a constant volatility. The latter defined as
the standard deviation of returns. However, the recording of
the empirical prices of financial options clearly indicates that
the volatility implied in these prices is not a constant, not
even a function of time, but a random variable �20,21�. This
gave rise in the late 1980s to the so-called stochastic volatil-
ity �SV� models for which return and volatility constitute a
two-dimensional diffusion process governed by a pair of
Langevin equations �22–24�.

Financial models based on SV have been gaining increas-
ing acceptance, not only for the initial motivation of correct-
ing option prices but also because they provide a natural and
reasonable explanation to many empirical observations
which are gathered together under the collective name of
“stylized facts” �15�. In particular SV models result in fat-
tailed distributions of returns which overcome one of the
main objections against the GBM. We should also note that
volatility is a crucial concept in any financial setting and
many financial products are based on it today. Therefore, the
risk associated with volatility is particularly important from
theoretical, as well as practical, aspects of the problem.

*jaume.masoliver@ub.edu
†josep.perello@ub.edu

PHYSICAL REVIEW E 80, 016108 �2009�

1539-3755/2009/80�1�/016108�15� ©2009 The American Physical Society016108-1

http://dx.doi.org/10.1103/PhysRevE.80.016108


The measure of risk is provided by the probability of at-
taining an extreme value �or a preassigned critical label� and,
in the standard approach, this probability is obtained through
the distribution of prices. In such a procedure the probability
of reaching a certain critical mark L is secured by counting
all times the process has reached the level L �25�. There is an
alternative �and finer� approach to the problem which con-
sists in counting only the event of reaching L for the first
time. This is the first-passage problem that, as we have ex-
plained above, it is an old and well-known acquaintance of
physics, engineering, and natural sciences �1,2�. Within the
context of continuous-time random walks, we have recently
shown that risk control methods based on first-passage tech-
niques are more efficient than traditional ones, since the lat-
ter clearly underestimate the risk �10�.

Herein we address the first-passage �or hitting� problem
for financial time series under the assumption of stochastic
volatility. We choose one particular SV model, the Heston
model, because it has the advantage of allowing exact ana-
lytical results �26–29�. We know that the model is unable to
explain long-term volatility autocorrelation �23�, but it still
contains interesting features consistent with empirical data.
In a very recent paper �11� we have solved a closely related
issue: the escape problem for the Heston model. In that prob-
lem the process can exit, for the first time, a given interval
and this leads to a two-barrier problem. However, in the
first-passage problem the process only crosses one critical
value which amounts to solving a one-barrier problem.

To our knowledge there are a few but increasing number
of works dealing with first-passage �30–34� and exit
�7–11,35–37� problems in finance. Many of them address the
exit problem in a restricted way, because they only obtain the
mean exit time, i.e., the first moment of the exit distribution.
This moment is easier to handle than the entire distribution,
although it provides much less information, especially about
the time evolution of the exit problem. On the other hand
first-passage problems are usually more intricate because in
many cases the mean-first-passage time �MFPT� does not
exist. This is the case, for instance, of the Brownian motion
or the standard SV models �see below�. In such situations
one is either bound to get the entire first-passage distribution,
which is usually quite involved, or to introduce ad hoc forces
for securing the existence of the first moment of the hitting
�35,36�.

In this paper we solve the complete first-passage problem
for the Heston SV model. We obtain the exact expression of
the survival probability �SP� and show that the mean-first-
passage time does not exist. We also average the volatility in
order to work out the problem for the return alone. We obtain
approximate expressions of the survival probability in sev-
eral asymptotic regimes—long times, large volatilities, and
small volatility fluctuations—and find that in these cases the
�approximate� survival probability is Gaussian and has the
same form as that of the Wiener process. We also obtain the
asymptotic expression for survival when the fluctuations of
the volatility are high. In the latter case the Gaussian char-
acter is lost and the probability of hitting an extreme value is
much higher than in the case of mild volatility fluctuations.
We finally compare the theoretical hitting probability with
the empirical one with a rather satisfactory agreement.

The paper is organized as follows. In Sec. II we present
the Heston model and obtain the exact solution to the first-
passage problem. In Sec. III we obtain the approximate ex-
pression for the survival probability in several asymptotic
limits. In Sec. IV we treat the problem according to the fluc-
tuations of the volatility. In Sec. V we average out the vola-
tility assuming that it has reached the stationary state. This
allows us to get exact as well as approximate expressions for
the survival probability of the return alone. Within the same
section, the obtained solution in terms of the hitting probabil-
ity is also contrasted with empirical data. A brief summary of
the main results along with a few conclusions are given in
Sec. VI. Some more technical details are in the Appendix.

II. HESTON MODEL AND THE FIRST-PASSAGE TIME
DISTRIBUTION

Let X�t� be the zero-mean return X�t� defined through the
stochastic differential �in the Itô sense�

dX�t� =
dP�t�
P�t�

− � dP�t�
P�t� � , �1�

where P�t� is a speculative price or the value of an index and
� · � denotes the average. In terms of X�t� the Heston model
�26� is a two-dimensional diffusion process �X�t� ,Y�t�� de-
scribed by the following pair of stochastic differential equa-
tions �again, in the Itô sense�:

dX�t� = 	Y�t�dW1�t� , �2�

dY�t� = − ��Y�t� − m2�dt + k	Y�t�dW2�t� , �3�

where Wi�t� are Wiener processes, i.e., dWi�t�=�i�t�dt �i
=1,2�, where �i�t� are zero-mean Gaussian white noises with
��i�t��i�t���=�ij��t− t�� �38�.

Equation �2� shows that Y�t� is the variance of return and
the volatility ��t� is given by

��t� = 	Y�t� . �4�

However, as long as no confusion arises, we will use the
term “volatility variable” or just “volatility” for the random
process Y�t�. Moreover, as proved many years ago �39�, the
volatility process Y�t� defined by Eq. �3� is positive and the
volatility is well defined.

In Eq. �3� the parameter m is the so-called “normal level
of volatility;” ��0 is related to the “reverting force” toward
the normal level m �which cannot be zero; see discussion
below�; and k, sometimes referred to as the “vol of vol,”
measures the fluctuations of the volatility. It is useful to keep
in mind that the quantities Y�t�, �, m2, and k have them all
units of 1/times; while the zero-mean return and, conse-
quently, L are dimensionless.

One can easily see that Y�t� is a homogeneous and sta-
tionary random process whose probability density function
as t→� �or, equivalently as t0→−�, where t0 is the initial
time� is given by the gamma distribution,

pst�y� =
�2�/k2��

����
y�−1e−�2�/k2�y , �5�

where �= �2� /k2�m2.
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From Eq. �5� we readily see that the stationary mean
value and the stationary variance of the volatility variable are

�Y�t��st = m2, Var
Y�t��st = �k2/2��m2. �6�

As long as Y�t� is a �positive� random variable neither its
variance nor its mean can be zero; hence, m�0.

After this brief summary on the Heston model we turn our
attention to first-passage problems. Let S�x ,y , t� be the prob-
ability that the zero-mean return X�t� initially at X�0�=x �40�
with volatility Y�0�=y has never crossed the critical level L
before time t.

When L	x �i.e., L is a level of losses� S�x ,y , t� coincides
with the SP for the joint process �X�t� ,Y�t�� to be, at time t,
still inside the semi-infinite strip

L 	 X�t� 	 �, 0 	 Y�t� 	 � .

In such a case the �first� hitting probability, that is, the prob-
ability of having a loss labeled by L �if L→−�, this is the
“default probability”� is given by

W�x,y,t� = 1 − S�x,y,t� . �7�

When L�x, S�x ,y , t� is the SP of the semi-infinite strip

− � 	 X�t� 	 L, 0 	 Y�t� 	 � ,

and the probability of hitting a profit L is also given by Eq.
�7�. Since in our Heston model we do not consider any bias,
both situations—loss and profit—are symmetrical.

The survival probability S�x ,y , t� is the solution to the
following initial and boundary value problem �41�:

�S

�t
= − ��y − m2�

�S

�y
+

1

2
k2y

�2S

�y2 +
1

2
y

�2S

�x2 , �8�

with initial and boundary conditions, respectively, given by

S�x,y,0� = 1, S�L,y,t� = 0. �9�

Note that the symmetry between losses and profits just men-
tioned can be readily seen by the fact that under the change
of variable

z = �L − x� �10�

problems �8� and �9� remains unchanged,

�S

�t
= − ��y − m2�

�S

�y
+

1

2
k2y

�2S

�y2 +
1

2
y

�2S

�z2 , �11�

with

S�z,y,0� = 1, S�0,y,t� = 0. �12�

Since z
0 and S�0,y , t�=0, we can define the Fourier
transform

S̃��,y,t� = 

0

�

S�z,y,t�sin �z dz , �13�

which turns Eqs. �11� and �12� into the following initial value
problem:

� S̃

�t
= − ��y − m2�

� S̃

�y
+

1

2
k2y

�2S̃

�y2 −
1

2
�2yS̃ , �14�

with an initial condition

S̃��,y,0� = P�1/�� , �15�

where

P�1/�� = 

0

�

sin �z dz = 1/� �� � 0� �16�

is the Cauchy principal value �42�. After the definition of the
dimensionless variables

� = �t, v = y/� , �17�

the problem above reads

� S̃

��
= − �v − 
�

� S̃

�v
+ ��2v/2�

�2S̃

�v2 − ��2/2�vS̃ �18�

and

S̃��,v,0� = P�1/�� , �19�

where


 = m2/� �20�

is the �dimensionless� normal level of volatility and

� � k/� �21�

is a dimensionless parameter which gauges the volatility
fluctuations with respect to the deterministic strength, mea-
sured by �, toward the normal level.

As can be easily seen by direct substitution the solution to
the problem posed by Eqs. �18� and �19� is furnished by

S̃��,v,�� = P�1/��exp
− A��,�� − 2B��,��v/�2� , �22�

where

A��,�� = �2
/�2�

0

�

B��,s�ds , �23�

and B�� ,�� obeys the Riccati equation

Ḃ = − B − B2 + ���/2�2, �24�

with an initial condition B�� ,0�=0.
The explicit expressions for the functions A�� ,�� and

B�� ,�� are obtained in the Appendix. Thus

A��,�� = �2
/�2���−���� + ln��+��� + �−���e−�����

���� �� ,

�25�

and

B��,�� = �−���
1 − e−�����

1 + ��−���/�+����e−����� , �26�

where
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���� = 	1 + ����2, ����� = ����� � 1�/2. �27�

Hence �cf. Eqs. �22�, �25�, and �26��,

S̃��,v,�� = P�1/��� ����e−�−����

�+��� + �−���e−������2
/�2

e−�2/�2�B��,��v.

�28�

The solution to the hitting problem for the two-
dimensional Heston SV model is therefore given by the Fou-
rier inversion

S�z,v,�� =
2

�



0

�

S̃��,v,��sin �z d� .

Plugging into this equation the expression for S̃�� ,v ,��
given in Eq. �28� and taking into account Eq. �16�, we get

S�z,v,�� =
2

�



0

� sin �z

�
� ����e−�−����

�+��� + �−���e−������2
/�2

�e−�2/�2�B��,��vd� . �29�

In Fig. 1 we represent the numerical evaluation of this
Fourier integral. We also show there the SP obtained through
numerical simulations of the Heston model �43�. The match
between both results is an indication of the correctness of our
calculations.

III. ASYMPTOTIC APPROXIMATIONS

Equation �29� provides the complete solution to the first-
passage problem for the Heston model which can be used to
get numerical values for the SP and the hitting probabilities
as shown in Fig. 1 as well as in the rest of figures of the
paper. However, it is not the most convenient form of
S�z ,v ,�� for bringing into light general properties of the
first-passage problem. We will, therefore, try to find approxi-

mate expressions that may uncover as many features of the
SP as possible. We first obtain asymptotic expressions of the
SP for long times which, in turn, will prove the nonexistence
of an average hitting �i.e., first-passage� time. Subsequently
we will obtain approximate expressions of the SP valid for
large to moderate volatilities.

We should also note that both approximations—i.e., long
times and large volatilities—coincide. As we will see next,
this coincidence is due to the particular form of the functions
�−��� and B�� ,�� defined above.

A. Long-time asymptotic expressions and mean-first-passage
time

We now focus on the behavior of the SP in the asymptotic
limit when t→�; to this end rewrite Eq. �29� in the follow-
ing form:

S�z,v,�� =
2

�



0

� sin �z

�
� ����e−B��,��v/


�+��� + �−���e−������2
/�2

�e−�2
�/�2��−���d� . �30�

For times such that

�
/�2�� � 1,

we are entitled to use the saddle-point method to secure an
approximation of the integral in Eq. �30�. One can easily
show that �=0 is a minimum of �−��� �cf. Eq. �27�� and
expanding around this minimum yields

�−��� = ���/2�2 + O��4� . �31�

Then

S�z,v,�� �
2

�



0

� sin �z

�
� ����e−B��,��v/


�+��� + �−���e−������2
/�2

�e−�
�/�2��2
d� . �32�

Following the saddle-point method �44� we expand to low
orders in � the argument of the exponential term �see Eq.
�26��,

B��,�� = ���/2�2�1 − e−�� + O��4� . �33�

Then taking into account Eq. �31� and �cf. Eq. �27��,

���� = 1 + ����2/2 + O��4� ,

�+��� = 1 + ���/2�2 + O��4� , �34�

we have

� ����
�+��� + �−���e−������2
/�2

e−�2/�2�B��,v�v

= �1 + O��2��exp�− ���/2�2�1 − e−��v� . �35�

Substituting Eq. �35� into Eq. �32� yields

S�z,v,�� �
2

�



0

� sin �z

�
exp�−

1

4
���,v��2�d� , �36�

where

10-2

10-1

100

10-3 10-2 10-1 100

S
(z

,v
=

θ,
τ=

0.
5)

z

Exact
Simulation

FIG. 1. �Color online� Log-log representation of the survival
probability S�z ,v ,�� as a function of z for �=0.5 �around 11 trading
days�, v=
, and �=0.1. Empty diamonds represent the numerical
evaluation of the exact expression given in Eq. �30�. Solid circles
represent simulation points of the Heston model. We use the realis-
tic parameters values presented in Ref. �27�, which are similar to
those encountered in actual markets: �=0.045 /day, m2=8.62
�10−5 /day and hence 
=1.92�10−3.
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���,v� � 2
� + 2�1 − e−��v . �37�

The integral appearing in the right-hand side of Eq. �36� can
be performed exactly �45� and we get

S�z,v,�� � erf� z
	��v,��

� ��
/�2�� � 1� , �38�

where

erf�x� =
2

	�



0

x

e−�2
d�

is the error function �46�.
It is interesting to note that this approximation to the sur-

vival probability fulfills not only the boundary condition but
the initial condition as well. The latter is quite remarkable
since the approximation is based on the assumption of long
time. That Eq. �38� obeys the boundary condition is readily
seen from the fact that erf�0�=0. As to the initial condition
we have S�z ,v ,�=0�=erf���=1. All of this is an indication
of the goodness of the approximation as is corroborated by
Fig. 2.

We shall now look at the mean-first-passage time. Let us
denote by tFP the time when the return X�t�, starting from a
known value x �40�, attains a certain �critical� level L for the
first time. This time, usually referred to as the first-passage
�or first-hitting� time, depends on x, L, and the current level
of volatility y. It is evidently a random variable whose aver-

age T= �tFP� is termed as the MFPT. In terms of the survival
probability this average hitting time is given by �41�

T�x,y� = 

0

�

S�x,y,t�dt .

Mathematical analysis tells us that in order for this integral
to exist it is necessary that S�x ,y , t� decays faster than 1 / t as
t→�. Now looking at Eq. �38� and recalling that erf�x�
=2x /	�+O�x2� we see that the SP of the Heston model de-
cays when �→� as

S�z,v,�� �
2z

�	���
�1 + O�1/��� .

Therefore, the survival probability falls off as 1 /	t and the
MFPT,

T�x,y� = � ,

does not exist.

B. First-passage problem for moderate and large volatilities

Let us start by observing, as it appears in the right-hand
side of Eq. �29�, that the dependence of the SP on the vola-
tility is that of a linear exponential. This suggests, as in the
previous case when �
 /�2���1, that as long as v is not
small—i.e., from moderate to large volatilities—we may uti-
lize again the saddle-point method for performing an ap-
proximate evaluation of Eq. �29�.

The case of large volatility turns out to be completely
analogous to the long-time approximation just discussed. In
fact both cases lead to exactly the same approximate expres-
sion for the SP. Indeed, from Eq. �33� we see that, like
�−���, B�� ,v� also attains a minimum value at �=0. Then, if
v is large enough, the saddle-point method allows us to write
the exact SP �Eq. �29�� in the approximate form

S�z,v,�� �
2

�



0

� sin �z

�
� ����e−�−����

�+��� + �−���e−������2
/�2

�e−�2�1−e−��v/2d� . �39�

As before we expand to the lowest order in � the bracketed
expression in the integrand; we have �see Eqs. �31� and �34��

����e−�−����

�+��� + �−���e−�������� �
e−���/2�2�

1 + ���/2�2e−�

= e−���/2�2��1 + O��2�� .

Substituting this into Eq. �39� we obtain again Eq. �36�,
which proves that the approximate expression of the SP valid
for moderate to large volatilities is also given by Eq. �38� as

S�z,v,�� � erf� z
	��v,��

� �v � 1� . �40�

The correctness of this approximation is clearly shown in
Fig. 3.

In the original units �cf. Eqs. �10� and �17�� the approxi-
mate SP reads

10-3

10-2

10-1

100

10-6 10-4 10-2 100 102 104

S
(z

=
0.

01
,v

,τ
)

τ

β=1

v/θ = 1000
v/θ = 100

v/θ = 5

FIG. 2. �Color online� Log-log representation of the survival
probability as a function of the scaled time � with z=0.01 and �
=1. Circles, squares, and diamonds represent the numerical evalu-
ation of the exact expression �30�, for the three values of the initial
volatility v shown in the figure. Solid lines correspond to the
asymptotic expression given by Eq. �38� in terms of the error func-
tion and different curves correspond to different values of v. We see
that as the volatility becomes smaller the exact expression needs a
longer time to converge to the asymptotic expression. When the
initial volatility is five times larger than the normal level, the con-
vergence time is about 105 trading days. For v /
=100 this time is
much less �about 103 days�. Let us note that for volatilities thou-
sand times higher than the normal level, the asymptotic curve fol-
lows very closely the exact SP for all values of �, which is in
agreement with the results of Sec. III B. We use the realistic param-
eter values given in Fig. 1.
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S�x,y,t� � erf� �L − x�
	��t,y�

� , �41�

where �cf. Eq. �37��

��t,y� = 2m2t + 2�1 − e−�t��y/�� . �42�

We remark that this approximation is valid for both long
times and large volatilities. In the original units the condition
of large volatilities, v�1, is simply

y � � ,

while the condition of long times, �
 /�2���1, reads

t � � k

�m
�2

,

that is, the time must be longer than a characteristic time,
tc= �k /�m�2, formed out of the three parameters of the
Heston model: the vol of vol k, the reversion to the mean �,
and the normal level m.

As long as we assume that neither the volatility nor the
time are small, we can safely use approximation �40� to ob-
tain the behavior of the SP as �L�→�. This is, perhaps, one
of the most interesting aspects of the first-passage problem to
look at, since the limit �L�→� is intimately related to ex-
treme risks and, ultimately, to the default. Using the follow-
ing asymptotic expression of the error function �46�:

erf�x� � 1 −
e−x2

	�x
�1 + O�1/x2�� ,

we have

S�z,v,�� � 1 −
	��v,��

z	�
e−z2/��v,���1 + O�1/z2�� . �43�

The hitting probability to the level L, W�z ,v ,��, is given
by Eq. �7�. The default or uprising probabilities will be ob-
tained by assuming �L�→�. In this way we find the follow-
ing exponential decrease:

W �
e−L2/�

�L�
��L� → �� . �44�

We finally take a closer look at the behavior of the SP
with increasing values of the volatility. Equation �40� is suit-
able for this purpose because it is valid for large values of the
volatility. Intuition tells us that as v→� the survival prob-
ability should tend to zero which is readily seen from Eqs.
�37� and �40�. Let us elucidate how this limit works. We first
note that

z
	���,v�

=
z

	2�1 − e−��v
�1 +

��2�

4�1 − e−��v
+ O�1/v2�� .

Moreover �46�

erf�x� =
2

	�
�x − x3/3 + O�x5�� .

Merging these two expressions into Eq. �40� we get

S�z,v,�� �
2z

	��1 − e−��v
�1 + O�1/v�� . �45�

Therefore, when volatility v increases the SP decreases as
v−1/2. Figure 3 shows this power-law behavior.

IV. FIRST-PASSAGE PROBLEM ACCORDING TO
VOLATILITY FLUCTUATIONS

In the last section we have been dealing with approximate
solutions to the hitting problem depending on the asymptotic
values of time or volatility. We shall now look into other
interesting and useful approximations.

Recall that the parameter

� = k/�

measures the strength of the volatility fluctuations, given by
the vol of vol k in relation to the deterministic pull � that
drives volatility to its normal level, toward the normal level
of volatility. In this way we may term the dimensionless
parameter � as the “normalized volatility fluctuation.” On
the other hand from Eqs. �6� and �21� we see that �2

= �2 /�m2�Var
Y�t��st. In other words, �2 is proportional to
the amplitude of the volatility autocorrelation in the station-
ary state. Therefore, the higher the � is, the more intense the
stationary autocorrelation becomes. We, therefore, expect
two different patterns according to whether � is small or
large. This duality is also present in the stationary distribu-
tion of the volatility. In effect, we see from Eq. �55� below
that the behavior of pst�v� drastically changes as � goes from
small values bounded by �	 �2
�1/2 to larger values such
that �� �2
�1/2. Indeed, as v→0 the former case yields
pst�v�→0, while in the latter pst�v�→�, a fact that has to be
taken into account in the numerical simulations of the Heston
model �43�.
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FIG. 3. �Color online� Log-log representation of the survival
probability S�z ,v ,�� as a function of the initial volatility with z
=0.01 and �=1. Diamonds and squares correspond to the numerical
evaluation of the exact expression �30� at two instants of time �
=0.1 and �=1 000. Solid lines represent the asymptotic error func-
tion given by Eq. �40�. Note that the approximation improves as
time increases, in agreement with the results of Sec. III A. We also
observe a power-law decay of the form v−1/2 with increasing vola-
tility in agreement with the asymptotic estimate given by Eq. �45�.
We have taken the realistic parameters of Fig. 1.
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We will explore what are the consequences of this on the
first-passage problem of the return X�t�. Let us first investi-
gate the case �→0.

A. Small fluctuations

We start from the exact expression of the SP given in Eq.
�29� and suppose that volatility fluctuations are weak. Spe-
cifically, we assume that the vol of vol is much smaller than
the pulling toward normal level, k��; that is,

� � 1.

A glance at Eq. �27� suffices to realize that the assumption of
�→0 is equivalent to assuming �→0. But the latter is pre-
cisely the limit taken in the previous section as a conse-
quence of the saddle-point approximation. We therefore ex-
pect that the case of weak fluctuations will lead to the same
approximation than those of long times or large volatilities.
Let us briefly show that this is indeed the case.

In effect, we start from Eq. �29� which we rewrite in the
form

S�z,v,�� =
2

�



0

� sin �z

�
� ����

�+��� + �−���e−������2
/�2

�exp
− �2/�2��
�−���� + B��,��v��d� .

�46�

If �→0 the integral can be approximately performed by the
saddle-point method which implies the expansion of the ex-
ponential term around its maximum located as before at �
=0. In other words,

exp
− �
�−���� + B��,��v�� = exp
�
� + �1 − e−��v����/2�2

+ O„����4
…� .

Moreover �cf. Eqs. �31� and �34��,

� ����
�+��� + �−���e−������2
/�2

= 1 + O„����2
… ,

and Eq. �46� yields

S�z,v,�� �
2

�



0

� sin �z

�
exp
− �
� + �1 − e−��v���2/2��d� ,

which coincides exactly with Eq. �36�. Hence, we have again
�see Eq. �40��

S�z,v,�� � erf� z
	��v,��

� �� � 1� , �47�

with ��z ,�� defined in Eq. �37�. In Fig. 4 we show the good-
ness of this approximation for the small value �=0.1.

Before proceeding further, let us notice an apparent con-
tradiction in the above statements on the coincidence of the
approximate expressions for the SP between the cases of
large volatility and reduced volatility fluctuations because, at
first sight, one would expect the opposite, i.e., that high vola-
tility and enhanced volatility fluctuations would be equiva-
lent. Let us remind, however, that a large volatility solely

means that today’s volatility is large and this, by any means,
does not imply that volatility fluctuations must be intense
and vice versa.

B. Large fluctuations

We once more start with the exact expression of the SP
given in Eq. �46� but supposing now intense volatility fluc-
tuations, so that the vol of vol is greater than the pulling
toward the normal level. In such a case

� � 1,

and from Eq. �27� we get the approximations

���� = �����1 + O� 1

�2�� ,

����� = ���/2��1 �
1

��
+ O� 1

�2�� . �48�

Hence �cf. Eq. �26��,

B��,�� � ��/2, �49�

where, in writing Eq. �49�, we have had to assume that time
� is long enough to neglect exponential terms of the form
e−��� and higher-order terms. This certainly excludes the ini-
tial stages of the process as will become clearer later. More-
over

� ����
�+��� + �−���e−������2
/�2

� �1 + O� 1

�2�� ,

where we have proceeded as in Eq. �49� by neglecting expo-
nentially small terms. Collecting these results into Eq. �46�
we find
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FIG. 4. �Color online� Log-log representation of the hitting
probability W�z ,v ,��=1−S�z ,v ,�� as a function of the threshold
distance z at time �=0.5 and v=
. Diamonds and squares represent
the numerical evaluation following the exact expression �30� for
two different values of �. The dotted line corresponds to the
asymptotic expression for � small given by Eq. �47�. The solid line
represents the approximate expression obtained through Eq. �51�.
We have chosen the realistic parameters of the previous figures and
solely modify the parameter k to provide different values of �.
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S�z,v,�� �
2

�



0

� sin �z

�
exp�− �
� + v���/���d� , �50�

which after performing the Fourier sine inversion yields �45�

S�z,v,�� �
2

�
arctan� �z


� + v
� . �51�

In Fig. 4 we show the accuracy of this approximation for a
large value of �.

In the original units we have

S�x,y,t� �
2

�
arctan� ��L − x�

m2t + y/�� �� � 1� . �52�

Let us remark that this expression verifies the boundary con-
dition S�L ,y , t�=0, but not the initial condition, since
S�x ,y ,0��1 for y�0. Consequently, Eq. �52� will work
only after the initial period has elapsed, as otherwise noted
above. We observe, however, that the initial condition would
be satisfied should we introduce an ad hoc factor �1−e�t�
multiplying the volatility. In this way we obtain a “semiphe-
nomenological approximation,” Sp�x ,y , t�, which obeys the
boundary condition as well as the initial condition

Sp�x,y,t� =
2

�
arctan�2�L − x�

��t,y�
� , �53�

where ��t ,y� is defined in Eq. �42�.

V. AVERAGING THE VOLATILITY

Actual financial data consist in time series of prices from
which returns are readily obtained. Once we have them,
volatilities are constructed as the standard deviation of re-
turns. Thus, in practice, volatility is a hidden variable that
has to be measured by indirect means �we refer the reader to
Ref. �47� for more information about this significant ques-
tion�. It is, therefore, meaningful to know whether the price
of a given asset has reached for the first time some critical
level regardless the value of its volatility. Let us remark that
in physics an analogous situation would be to know whether
the position of a Brownian particle has first reached some
preassigned value without worrying about its velocity
�48,49�.

Our goal is then to get the survival and the hitting prob-
abilities of the return overlooking volatility. We proceed as in
Ref. �11� and average the volatility away from S�z ,v ,��. In
order to perform such an average we must choose an appro-
priate probability density for it. To this end we make the
assumption that the entire process described by Eqs. �2� and
�3� commenced in the infinite past. Consequently, at the
present time where we measure the return, the volatility has
reached the stationary state. We, therefore, define the aver-
aged SP, S�z ,��, as

S�z,�� = 

0

�

S�z,v,��pst�v�dv , �54�

where pst�v�, the stationary probability density of the volatil-
ity, is given by the gamma distribution �cf. Eqs. �5�, �20�, and
�21��

pst�v� =
�2/�2�2
/�2

��2
/�2�
v2
/�2−1e−2v/�2

. �55�

Substituting the exact SP, as given in Eq. �46�, into Eq.
�54� and performing the integral over the volatility, we have

S�z,�� =
2

�



0

� sin �z

�

�� ����
��+��� + �−���e−�������1 + B��,����2
/�2

�e−�2
�/�2��−���d� .

We will write this expression in a more convenient and sim-
plified form. Let us note from Eq. �26� that

1 + B��,�� =
���� + �1 + �−���� + �−����1 − �+����e−�����

�+��� + �−���e−����� ,

but 1+�−���=�+��� and 1−�+���=−�−���. Hence

1 + B��,�� =
�+

2��� − �−
2���e−�����

�+��� + �−���e−����� .

Therefore,

S�z,�� =
2

�



0

� sin �z

�
� ����

�+
2��� − �−

2���e−������2
/�2

�e−�2
�/�2��−���d� . �56�

This is the exact expression for the return’s survival prob-
ability when the volatility has been “thermalized.” Before
proceeding further in seeking approximate expressions for
S�z ,��, as we have done above with S�z ,v ,��, we will first
obtain the SP had the return followed the Wiener process.

A. Wiener process

Undoubtedly the most spread market model is the geo-
metric Brownian motion which was proposed by Osborne in
the late 1950s �50�. In this model the volatility � is constant
and the zero-mean return is described by the stochastic dif-
ferential equation

dX�t� = �dW�t� ,

that is, X�t� is the Wiener process with variance �2t.
Let us denote by S0�x , t� the survival probability of the

Wiener process inside the semi-infinite strip L	X�t�	� if
x�L �or inside −�	X�t�	L if x	L�. This function obeys
the equation �41�

�S0

�t
=

1

2
�2�2S0

�x2 ,

with initial and boundary conditions

S0�x,0� = 1, S0�L,t� = 0.

Getting along the lines of Sec. II we define the new return
variable �cf. Eq. �10��
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z = �L − x� ,

for which the hitting problem remains unchanged, except
that now the boundary is located at z=0. As before the solu-
tion is given in the form of a Fourier integral

S0�z,t� =
2

�



0

�

S̃0��,t�sin �z d� ,

where S̃0�� , t� obeys the differential equation

� S̃0

�t
= − ���2/2�S̃0,

with the initial condition

S̃0��,0� = P�1/�� .

The solution to this initial-value problem is straightforward
and reads

S̃0��,t� = P�1/��e−�2�2t/2.

Hence

S0�z,t� =
2

�



0

�

e−�2�2t/2sin �z
d�

�
,

whence

S0�x,t� = erf� �L − x�
	2�2t

� . �57�

The comparison of the exact SP for the Wiener return �Eq.
�57�� with Heston’s approximate SP given in Eq. �41� brings
up an interesting detail. Thus for long times, large volatility
or reduced volatility fluctuations, the approximate SP of the
Heston model has the same form as that of Wiener SP,
changing only the function �2t �which for the Wiener case is
precisely the return’s second moment� by the function m2t
+ �1−e−�t��y /�� for the Heston case. Let us observe that this
function almost agrees with the return second moment which
can be shown to be �27�

�X2�t�� = m2t + �y − m2��1 − e−�t�/� . �58�

B. Asymptotic approximations

We go back to the exact SP of Heston’s return �Eq. �56��.
Looking at the exponential in the right-hand side of that
equation, we easily realize that if the �dimensionless� group
of parameters given by

�
/�2�� = �m/��2t �59�

is large, we can apply the saddle-point approximation to get
an approximate expression of the SP. Then proceeding as in
Sec. III A and using Eqs. �31� and �34� we will have

S�z,�� �
2

�



0

� sin �z

�
e−�
�/2��2

d� .

Whence

S�z,�� � erf� z
	2
�

� . �60�

Figure 5 shows the hitting probability, W�z ,��=1
−S�z ,��, with S�z ,�� obtained by means of Eq. �60�. We
compare it with the exact result evaluated through Eq. �56�.
As we see in Fig. 5 the approximation works fairly well for
very small values of �, whereas for �=1 Eq. �60� signifi-
cantly deviates from the exact result. We remark that al-
though the approximation above is meant for small values of
� it is itself independent of �. In Fig. 6 we represent the
dependence on � of the hitting probability and this fact be-
comes apparent.
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FIG. 5. �Color online� Log-log plot of the hitting probability
W�z ,��=1−S�z ,�� as a function of z for a fixed time ��=1, approxi-
mately 22 trading days� and for different values of �. The solid line
represents the approximation given by Eq. �60�—which, recall, is
independent of �—while dots �i.e., circles, diamonds, and squares�
represent the exact result. Equation �60� only works for very mild
volatility fluctuations �note the clear divergence between the exact
probability and its approximation for �=1�. Parameters are the
same as those of Fig. 1.
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FIG. 6. �Color online� Log-log plot of the hitting probability
W�z ,��=1−S�z ,�� as a function of �. Circles and diamonds repre-
sent the exact result, obtained through numerical integration of Eq.
�56�, for z=0.01 and two instants of time: �=0.1 and �=1. Note that
for small values of � the hitting probability is insensitive to �, in
agreement with Eq. �60�. Moreover, for large values of � we ob-
serve the power-law decay predicted in the asymptotic estimate
given by Eq. �66�, i.e., W��−1. Parameters are the same as those of
Fig. 1.
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In the original units we have

S�x,t� � erf� �L − x�
	2m2t

� . �61�

Recall that this approximation is valid as long as the group of
parameters defined in Eq. �59�,

�m/��2t � 1,

attains a large value. That is to say, either for long time t, or
when the normal level m is large, or the �normalized� vola-
tility fluctuation � is small. Moreover Eq. �61� exactly cor-
responds to the Wiener SP �Eq. �57�� by switching the con-
stant volatility of the latter to the normal level. We also note
this approximation has the same form as that of Eq. �47�
after setting y=0.

Since the approximate expression for S�x , t� given in Eq.
�60� is the same as that of S�z ,v=0,�� given in Eq. �47�, the
default �or uprising� problem when �L�→� will be given by
Eqs. �43� and �44� when v=0. That is,

S�z,�� � 1 −	2
�

�

e−L2/2
�

�L�
��L� → �� �62�

and

W�z,�� �	2
�

�

e−L2/2
�

�L�
��L� → �� , �63�

which means an acute exponential decrease in default as
�L�→�. This is to be contrasted with a very much slow de-
scent of these probabilities to be discussed next.

C. High volatility fluctuations

The other approximation that remains is that of high vola-
tility fluctuations. We start from the exact expression of the
SP given in Eq. �56� and if � is large we may proceed as in
Sec. IV A. We, therefore, use the expansions given in Eq.
�48� along with

��
2 ��� = ���/2�2�1 �

2

��
+ O� 1

�2��
to write

����
�+

2��� − �−
2���e−����� �

2

1 + ��/2
,

where we have neglected exponential small terms of the
form e−���. Substituting into Eq. �56� we obtain

S�z,�� �
2

�



0

� sin �z

�
� 2

1 + ��/2�2
/�2

e−�
�/���d� .

Moreover as �→� we have

� 2

1 + ��/2�2
/�2

= 1 + �2


�2�ln� 2

1 + ��/2� + O� 1

�4� ,

and to the lowest order we get

S�z,�� �
2

�



0

� sin �z

�
�1 + O�1/�2��e−�
�/���d� .

Whence

S�z,�� �
2

�
arctan��z


�
� �� � 1� . �64�

The asymptotic SP given by Eq. �64� has the same func-
tional form as that of Eq. �51�. In fact by neglecting the
volatility in Eq. �51� both approximations coincide. A singu-
lar characteristic of Eq. �64� is that it satisfies both boundary
and initial conditions, while approximation �51� involving
volatility solely obeys the boundary condition. Moreover,
and contrary to the approximation given by Eq. �61�, the case
of intense volatility fluctuations given in Eq. �64� is not by
any means related to the Wiener case discussed in Sec. V A.
Therefore, Eq. �64�, and the same applies to Eq. �51�, repre-
sents a distinct characteristic of the Heston model—and, by
extension, to any SV model—which has no parallel in the
Wiener model.

Figure 7 displays the hitting probability W�z ,�� when the
SP is given by approximation �64� along with the exact W
obtained through the numerical integration of Eq. �56�. The
curves shown correspond to increasingly large values of �.
Let us note the excellent agreement between the approxima-
tion and the exact result even for moderately high values of
�.

The singular character of Eq. �64� is best expressed when
one considers the possibility of default �or uprising� for
which �L�→�. In this case, using the asymptotic estimate

arctan z � �/2 − 1/z + O�1/z3� ,

we get

S�z,�� � 1 −

�

��L�
��L� → �� , �65�

and
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FIG. 7. �Color online� Log-log plot of the hitting probability
W�z ,��=1−S�z ,�� as a function of z with �=0.5 and for three large
values of �. Solid lines display W�z ,�� based on the approximation
given in Eq. �64�, while dots represent the exact result obtained
through the numerical integration of Eq. �56�. Parameters are the
same as those of Fig. 1.

JAUME MASOLIVER AND JOSEP PERELLÓ PHYSICAL REVIEW E 80, 016108 �2009�

016108-10



W�z,�� �

�

��L�
��L� → �� �66�

�see Fig. 6�. Comparing this slow decrease in L with the
enhanced exponential fall of the previous section �see Eqs.
�62� and �63��, we see that a boost on volatility fluctuations
results in a large increase in risk.

D. Crossing level and increase in risk

Figure 8 shows the exact hitting probability for both mild
and intense volatility fluctuations, along with the approxima-
tions given by Eqs. �60� and �64� corresponding, respec-
tively, to � small and large. Considering z= �L� �40� the exact
expressions of W intersect at a certain value lc of �L� �in Fig.
8, lc�0.336�. The intersection marks a turning point of the
hitting problem, for when �L�	 lc the probability of reaching
�L� is higher for small volatility fluctuations than when these
are intense. On the other hand, when �L�� lc the situation is
reversed, because now the hitting probability corresponding
to large values of � becomes increasingly higher with �L�
than that corresponding to small values of �. All of this is in
agreement with the asymptotic estimates given by Eqs. �63�
and �66� which predict a quadratic exponential decay in �L�
for � small, and a much slower power-law decay of the form
1 / �L� when � is large.

We can approximately evaluate the crossing level lc
through the asymptotic forms of the SP given in Eqs. �60�
and �64�. Indeed, due to the good precision of these approxi-
mations �see Fig. 8�, a relatively accurate estimation of lc is
obtained from the solution of the transcendental equation

erf� lc

	2
�
� =

2

�
arctan��lc


�
� , �67�

which, in turn, shows that the crossing level depends on
volatility fluctuations � and also on the time and the normal
level through the combination 
�, i.e.,

lc = lc��,
�� .

In Fig. 9 we represent the numerical solution of Eq. �67� in
terms of �, with 
 fixed and for three instances of time. We
see there that lc increases with time and also with �. In fact,
there seems to be a logarithmic behavior of the crossing level
with respect to the volatility fluctuations,

lc � ln��� , �68�

as shown by the fits in Fig. 9.
The dependence on time of the crossing level is pictured

in Fig. 10 where we clearly see that lc increases with time,
although now there seems to be a power-law behavior

lc � �
���, �69�

where � depends on �. Let us finally return to the increase in
risk as volatility fluctuations get higher. This can be visual-
ized by calculating the ratio
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FIG. 8. �Color online� Log-log plot of the hitting probability
W�z ,��=1−S�z ,�� as a function of z with �=3 and for large and
small volatility fluctuations given, respectively, by �=10 and �
=0.1. Circles and squares represent the exact W�z ,�� obtained
through Eq. �56�. Curves display W�z ,�� based on the approxima-
tions given in Eq. �60� �dotted line� and Eq. �64� �solid line�. Pa-
rameters are the same as those of Fig. 1.
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FIG. 9. �Color online� Numerical solution of Eq. �67� in terms
of � with a fixed value of the normal level of volatility 
=1.92
�10−3 �the same as of the previous figures� and for �=0.7, �=1.3,
and �=2.0. Note that for approximately ��10, lc slows down its
increase. Solid lines represent a logarithmic fit. Parameters are the
same as those of Fig. 1.
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FIG. 10. �Color online� Numerical solution of Eq. �67� in terms
of 
� for �=1, 5, and 10. Solid lines are the power law given in Eq.
�69� where the exponent � depends on � and takes the values �
=0.3293�0.0051 for �=1, �=0.4212�0.0011 for �=5, and �
=0.4358�0.0007 for �=10. Parameters are the same as those of
Fig. 1.
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W̄�z,�� �
W�z,��
W0�z,��

, �70�

between the hitting probability W�z ,�� �evaluated through
the exact SP, Eq. �56�� and the hitting probability corre-
sponding to the Wiener process W0�z ,��=1−S0�z ,��, where
S0�z ,�� is given in Eq. �57�. Note that we use W0�z ,�� to

construct the ratio W̄�z ,�� because for small volatility fluc-
tuations Heston’s and Wiener’s SPs share the same form.

For sufficiently large fluctuations, and according to the

above discussion, the ratio W̄ should greatly increase as �L�
→�. Indeed, when ��1 and �L�→� we have from Eqs.
�63� and �66�

W̄�z,�� � ��
�/2�1/2eL2/2
�. �71�

In Fig. 11 we represent W̄�z ,�� �evaluated from the exact
result� as a function of z �i.e., �L�� when �=10 and �=3. As

we see there the exponential growth of W̄ as �L� increases is
manifested.

Figure 11 also shows that for small values of �L� the ratio
is smaller than 1, which implies a greater probability of the
hitting label �L� when � is small than when it is large. How-
ever, this fact, already observed in Fig. 8, has little conse-
quences on risk control due to the smallness of �L�. We con-
sider the above findings on the relationship between
volatility fluctuations and risk one of the key results of the
present work, which might have useful practical conse-
quences on risk management and control.

E. Empirical data and applications

Without the aim of being exhaustive, we have taken the
Dow Jones Industrial Average �DJIA� daily index for the
period between 1900 and 2004, which corresponds to 28 545
trading days. This is one of the largest daily data sets avail-
able, and we will leave for future investigations a more thor-
ough empirical study on other daily data sets and on high-

frequency data �33�. The purpose of this section is to
illustrate how feasible is to describe real data with the theo-
retical Heston model as far as hitting probabilities and ex-
treme events are concerned. We know that the model fails to
explain the long-term memory in volatility observed in real
markets but we still wonder whether it may provide an im-
proved and more effective tool for estimating risk in finan-
cial data.

We remind that the mean-first-passage time of the Heston
model �as well as that of the Wiener process� does not exist
and this makes impossible to perform an appropriate testing
of these models based on the first moment �51�. We therefore
focus on the hitting probability which we believe to be one
of the most appropriate magnitudes to measure risk in finan-
cial data.

The most popular measure of risk is the so-called value at
risk. This measure is based on the knowledge of the unre-
stricted probability and therefore ignores if return prices has
crossed the critical level before the end of the given time
span. It is precisely in this way how hitting probability ap-
pears to be a more powerful measure to evaluate portfolio
and asset risks �10�.

Another practical interest is related to the optimization of
trading strategies. There exist an increasing interest of more
systematic quantitative-based strategies and these are mostly
expressed in terms of a first-passage time problem �34�. This
interest has motivated recent empirical studies on the hitting
probability �33�.

We first construct the discrete version of the daily zero-
mean return,

X�t + 1 day� − X�t� =
P�t + 1 day� − P�t�

P�t�

− �P�t + 1 day� − P�t�
P�t� � ,

to be used for the later computation of the hitting probability.
Figure 12 shows the hitting probability on the DJIA index
results as a function of the critical level for a time window of
22 trading days. Circles represent the hitting statistics of
positive levels while squares plot the statistics of negative
levels. Clearly, one can observe the well-known asymmetry
between positive and negative return statistics in real mar-
kets. This phenomenon is also linked to the so-called lever-
age effect and to the asymmetric return-volatility correlation
in the stochastic volatility framework �52,53�.

Figure 12 also represents the Wiener case �dots� with the
estimated historical volatility �=0.0080 /	day. The plot tells
us that the Wiener model underestimates the hitting probabil-
ity �and therefore risk� of extreme events. For a critical level
located further than 10% return, it is possible to observe
discrepancies and these events can be observed quite often in
real markets. The non-Gaussian effects are therefore impor-
tant even for not very extreme situations. For instance, hit-
ting 20% return happens with a probability of 1/300 and
Wiener model assumes to this to be very improbable �smaller
than 1 /10 000�.

In contrast, the Heston model is able to improve the de-
scription of the empirical statistics. For the most extreme
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FIG. 11. �Color online� Log-log plot of the ratio W̄�z ,�� as a
function of z when �=10 and �=3. Note the sharp burst as �L�
increases, in agreement with the approximation given by Eq. �71�.
The inset shows the little decrease in the ratio for small values of �L�
�see also Fig. 8�. The turning point between these two behaviors is
approximately located at �L�= lc=0.336.
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events the description becomes less accurate. We nonetheless
think that this deviation may be due to the lack of data. The
solid lines correspond to the Heston hitting probability given
by the numerical evaluation of Eq. �56� with different sets of
parameters. As we have noticed in previous works �23,53�, it
is only possible to account for both sides of the return statis-
tics if negative correlation between Wiener noise in volatility
process and Wiener noise in return process is considered �cf.
Eqs. �2� and �3��. Let us recall that we have obtained a closed
form solution in the cases when this correlation is taken to be
zero and this is the reason why we get a symmetric solution
without distinction between positive and negative levels.
Consequently, we have taken two different sets of param-
eters: one for the positive levels and another for the negative
ones. In both cases we start from the parameters proposed in
Ref. �27�, and we slightly modify them to improve the fitting.
The given parameters allow us to reckon the size of volatility
fluctuations as �=0.054 for positive levels, and �=0.10 for
negative levels. Both cases belong to the regime of small
volatility fluctuations ��	1�.

These features have been tested for other time windows
�shorter and longer� with similar conclusions. We will leave
a more exhaustive test on different sources of empirical data
for future research.

VI. SUMMARY AND CONCLUSIONS

We have approached the issue of risk evaluation and con-
trol as a first-passage problem within the assumption of sto-
chastic volatility given by the Heston model. The problem is
solved when one knows the survival probability, S�x ,y , t�, to
a certain critical level L, of the return X�t� starting at X�0�
=x �usually x=0 �40�� with initial volatility Y�0�=y. Closely
related to the SP it is the hitting probability W�x ,y , t�=1

−S�x ,y , t�. When the critical level, L�0, is positive W rep-
resents the probability of an uprising at time t. On the con-
trary if L	0, W gives the probability of having, at time t, a
loss quantified by L �when L→−� this is the default prob-
ability�.

For the Heston model, the SP obeys the backward Fokker-
Planck equation �Eq. �8�� with initial and boundary condi-
tions given by Eq. �9�. The problem have been solved exactly
by means of the Fourier-sine integral given in Eq. �29�. We
have then proceeded to get handy approximations to the ex-
act SP. Thus, in the asymptotic regimes of either long times
or large initial volatilities, the SP goes to the following
Gaussian form which constitutes a restatement of the central
limit theorem:

S�x,y,t� � erf� �L − x�
	��t,y�

� , �72�

where ��t ,y� is defined in Eq. �42�. This approximation is
also valid when the amplitude of the volatility fluctuations is
small. This amplitude is characterized by the dimensionless
parameter �=k /� formed by the ratio between the vol of vol
k and the strength of the reverting force, toward the normal
level, measured by �. A remarkable feature of the asymptotic
expression �Eq. �72�� is that it has the same form had the
return followed the Wiener process �i.e., constant volatility�
instead of the Heston model.

Other consequences of the asymptotic form above are, on
one hand, the nonexistence of a mean-first-passage time,
since

S�x,y,t� � t−1/2

as t→� and the SP does not decay fast enough in order to
possess a mean-first-passage time. On the other hand, when
the volatility variable y increases the SP decreases as the
power law

S�x,y,t� � y−1/2.

Obviously these properties are shared by the Wiener process
because all of them stem from the common form given by
Eq. �72�.

An additional asymptotic form of the survival probability
is obtained when one considers the fluctuations of the vola-
tility which are characterized by the parameter �. As men-
tioned above, for mild fluctuations for which ��1, the ap-
proximate SP is still given by Eq. �72�. However, when �
�1, i.e., for extreme fluctuations, the asymptotic SP is given
by the following non-Gaussian form:

S�x,y,t� �
2

�
arctan� ��L − x�

m2t + y/�� �� � 1� . �73�

Real financial data consist of time series of prices and the
volatility is not directly recorded and only observed in an
indirect way. This hidden character makes it worth averaging
out volatility from the expressions of S�x ,y , t� and thus solv-
ing the hitting problem for the return alone. The assumption
to be made is that the volatility has reached the stationary
state characterized by the gamma distribution.
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FIG. 12. �Color online� Dow Jones daily data hitting probability
as a function of z= �L−x� with t=22 days for L−x�0 �circles� and
L−x	0 �squares�. Heston model solution �solid lines� given by Eq.
�56� is also represented with very similar parameters to those ob-
tained in Ref. �27�. For positive critical levels, parameters are �
=0.045, m2=6.2�10−5 /day, k=0.0025 /day, and hence �=0.054.
For negative critical levels, parameters are �=0.035, m2=8.6
�10−5 /day, k=0.0034 /day, and �=0.10. Dotted line corresponds
to the error function of the Wiener return given in Eq. �57� with the
volatility estimated from the standard deviation of empirical daily
return �=0.0080 day−1/2.
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Following this way we have obtained the exact expression
of S�x , t� given in Eq. �56�, again in terms of a Fourier inte-
gral. As before the averaged SP has two different asymptotic
forms: a Gaussian approximation for long times or small
volatility fluctuations and another form, which is non-
Gaussian, for intense fluctuations. Thus, when the group of
parameters �m /��2t�1 attains a large value �i.e., for long
time t, or large normal level m2, or small volatility fluctua-
tions �� the averaged SP is approximately given by the fol-
lowing Gaussian form:

S�x,t� � erf� �L − x�
	2m2t

� , �74�

which, curiously enough, has the same form as Eq. �72� after
setting y=0.

The same trend is obtained in the case of large volatility
fluctuations, since now the following non-Gaussian form
emerges:

S�x,t� �
2

�
arctan���L − x�

m2t
� �� � 1� , �75�

which, again, has the same form of Eq. �73� after setting y
=0.

The most striking difference between these two
asymptotic forms of the first-passage problem appears when
considering the extreme risk of default. In such a case L→
−� and the hitting probability W�x , t� corresponding to
Gaussian form �74� quickly decays by following a decreas-
ing quadratic exponential. On the other hand, as volatility
fluctuations increase, the non-Gaussian approximation �Eq.
�75�� decays much slowly by following a power law. This
means a significant increase in risk as the fluctuations of the
volatility soar. We have shown that there is a crossing level
lc= lc�� ,m2t� from which risk exponentially rises. For a fixed
value of time, the crossing level seems to follow the loga-
rithmic law lc� ln �, while for a fixed value of � the cross-
ing level apparently increases as a power law lc��m2t��,
where the exponent � depends of �.

Practical consequences of these findings on actual mar-
kets have also been presented. We have compared the nu-
merical results with the daily Dow Jones Industrial Average
index with satisfactory results. The hitting probability de-
scription when the time horizon is 22 trading days highly
improves the Wiener model for those critical levels larger
than 10% return as shown in Fig. 12. The parameters used
are slight modifications to those presented in Ref. �27� for
fitting the unrestricted probability density. The empirical hit-
ting probability differs in a sensible manner depending on
the sign of the critical level. For negative critical levels, that
is, for those below current stock price, the hitting probability
is higher than for positive critical levels. Our solution will
unable to explain this asymmetry unless we consider a nega-
tive correlation between the two input noises in Eqs. �2� and
�3�. This sophistication needs to be added using perturbation
methods. We will leave for future investigations a more thor-
ough empirical study on other daily data sets and on high-
frequency data as well.
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APPENDIX: FUNCTIONS A(� ,�) AND B(� ,�)

The function B�� ,�� is the solution of the Riccati equa-
tion

Ḃ = − B − B2 + ���/2�2, �A1�

with initial condition B�� ,0�=0. Defining a new function
Z�� ,�� related to B by

B =
Ż

Z
,

then Z obeys the linear equation

Z̈ + Ż − ���/2�2Z = 0,

whose solution is

Z��,�� = C1���e�−���� + C2���e−�+����,

where C1��� and C2��� are arbitrary and ����� are defined
in Eq. �27�. The expression of B�� ,�� is thus given by

B��,�� =
�−��� − �C2���/C1�����+���e−�����

1 + �C2���/C1����e−����� ,

where ���� is defined in Eq. �27�. From the initial condition
we get

C2���/C1��� = �−���/�+��� .

Therefore,

B��,�� = �−���
1 − e−�����

1 + ��−���/�+����e−����� , �A2�

which proves Eq. �26�.
We now substitute Eq. �A2� into Eq. �23� and define �

=e−���� as a new integration variable; we get

A��,�� = �2


�2��−���
���� 
e−�����

1 1 − �

��1 + ��−/�+���
d� .

Taking into account


 1 − �

��1 + ��−/�+���
d� = ln � − �1 + �+/�−�ln�1 + ��+/�−���

and recalling that �−���+�+���=���� �cf. Eq. �27��, we
finally obtain

A��,�� = �2


�2���−���� + ln��+��� + �−���e−�����

���� �� ,

�A3�

which proves Eq. �25�.
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